前言
Redis本质上是一个基于键值对(Key-Value)类型的内存数据库,Redis的Value可以由String,hash,list,set,zset,Bitmaps,HyperLogLog等多种数据结构和算法组成。整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到硬盘上进行保存。因为是纯内存操作,Redis的性能非常出色,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB。可用于缓存、事件发布或订阅、高速队列等场景。该数据库使用ANSI C语言编写,支持网络,提供字符串、哈希、列表、队列、集合结构直接存取,基于内存,可持久化。Redis 内置了 复制(replication),LUA脚本(Lua scripting), LRU驱动事件(LRU eviction),事务(transactions) 和不同级别的 磁盘持久化(persistence), 并通过 Redis哨兵(Sentinel)和自动 分区(Cluster)提供高可用性(high availability)。
官方给出的性能可以达到10W+qps,那么Redis到底快在哪呢?
开发语言
现在我们都用高级语言来编程,比如Java、python等。也许你会觉得C语言很古老,但是它真的很有用,毕竟unix系统就是用C实现的,所以C语言是非常贴近操作系统的语言。Redis就是用C语言开发的,所以执行会比较快。
纯内存访问
Redis将所有数据放在内存中,非数据同步正常工作中,是不需要从磁盘读取数据的,0次IO。内存响应时间大约为100纳秒,这是Redis速度快的重要基础。
单线程
第一,单线程简化算法的实现,并发的数据结构实现不但困难且测试也麻烦。
第二,单线程避免了线程切换以及加锁释放锁带来的消耗,对于服务端开发来说,锁和线程切换通常是性能杀手。
当然了,单线程也会有它的缺点,也是Redis的噩梦:阻塞。如果执行一个命令过长,那么会造成其他命令的阻塞,对于Redis是十分致命的,所以Redis是面向快速执行场景的数据库。
除了Redis之外,Node.js也是单线程,Nginx也是单线程,但他们都是服务器高性能的典范。
非阻塞多路I/O复用机制
先说一下传统的阻塞I/O是如何工作的:
当使用read或者write对某一文件描述符(File Descriptor FD)进行读写的时候,如果数据没有收到,那么该线程会被挂起,直到收到数据。阻塞模型虽然易于理解,但是在需要处理多个客户端任务的时候,不会使用阻塞模型。
I/O多路复用实际上是指多个连接的管理可以在同一进程。多路是指网络连接,复用只是同一个线程。在网络服务中,I/O多路复用起的作用是一次性把多个连接的事件通知业务代码处理,处理的方式由业务代码来决定。在I/O多路复用模型中,最重要的函数调用就是I/O 多路复用函数,该方法能同时监控多个文件描述符(fd)的读写情况,当其中的某些fd可读/写时,该方法就会返回可读/写的fd个数。
Redis使用epoll作为I/O多路复用技术的实现,再加上Redis自身的事件处理模型将epoll的read、write、close等都转换成事件,不在网络I/O上浪费过多的时间。实现对多个FD读写的监控,提高性能。
举个例子:比如一个tcp服务器处理20个客户端socket。
A方案:顺序处理,如果第一个socket因为网卡读数据处理慢了,一阻塞,后面都玩蛋去。
B方案:每个socket请求都创建一个分身子进程来处理,不说每个进程消耗大量系统资源,光是进程切换就够操作系统累的了。
C方案(I/O复用模型,epoll):将用户socket对应的fd注册进epoll(实际上服务器和操作系统之间传递的不是socket的fd而是fd_set的数据结构),然后epoll只告诉哪些需要读/写的socket,只需要处理那些活跃的、有变化的socket fd的就好了。这样,整个过程只在调用epoll的时候才会阻塞,收发客户消息是不会阻塞的。