Java内存模型-理解final

概述

与锁和 volatile 相比较,对 final 域的读和写更像是普通的变量访问。对于 final 域,编译器和处理器要遵守两个重排序规则:

  • 在构造函数内对一个 final 域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
  • 初次读一个包含 final 域的对象的引用,与随后初次读这个 final 域,这两个操作之间不能重排序。

示例代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class FinalExample {
int i; // 普通变量
final int j; //final 变量
static FinalExample obj;

public void FinalExample () { // 构造函数
i = 1; // 写普通域
j = 2; // 写 final 域
}

public static void writer () { // 写线程 A 执行
obj = new FinalExample ();
}

public static void reader () { // 读线程 B 执行
FinalExample object = obj; // 读对象引用
int a = object.i; // 读普通域
int b = object.j; // 读 final 域
}
}

这里假设一个线程 A 执行 writer () 方法,随后另一个线程 B 执行 reader () 方法。

写final域的重排序规则

写 final 域的重排序规则禁止把 final 域的写重排序到构造函数之外。这个规则的实现包含下面 2 个方面:

  • JMM 禁止编译器把 final 域的写重排序到构造函数之外。
  • 编译器会在 final 域的写之后,构造函数 return 之前,插入一个 StoreStore 屏障。这个屏障禁止处理器把 final 域的写重排序到构造函数之外。

现在分析 writer () 方法:finalExample = new FinalExample ()。这行代码包含两个步骤:

  • 构造一个 FinalExample 类型的对象;
  • 把这个对象的引用赋值给引用变量 obj。

假设线程 B 读对象引用与读对象的成员域之间没有重排序,下图是一种可能的执行时序:
img

在上图中,写普通域的操作被编译器重排序到了构造函数之外,读线程 B 错误的读取了普通变量 i 初始化之前的值。而写 final 域的操作,被写 final 域的重排序规则“限定”在了构造函数之内,读线程 B 正确的读取了 final 变量初始化之后的值。

写 final 域的重排序规则可以确保:在对象引用为任意线程可见之前,对象的 final 域已经被正确初始化过了,而普通域不具有这个保障。以上图为例,在读线程 B“看到”对象引用 obj 时,很可能 obj 对象还没有构造完成(对普通域 i 的写操作被重排序到构造函数外,此时初始值 2 还没有写入普通域 i)。

读final域的重排序规则

在一个线程中,初次读对象引用与初次读该对象包含的 final 域,JMM 禁止处理器重排序这两个操作(这个规则仅仅针对处理器)。编译器会在读 final 域操作的前面插入一个 LoadLoad 屏障。

初次读对象引用与初次读该对象包含的 final 域,这两个操作之间存在间接依赖关系。由于编译器遵守间接依赖关系,因此编译器不会重排序这两个操作。大多数处理器也会遵守间接依赖,大多数处理器也不会重排序这两个操作。但有少数处理器允许对存在间接依赖关系的操作做重排序(比如 alpha 处理器),这个规则就是专门用来针对这种处理器。

reader() 方法包含三个操作:

  • 初次读引用变量 obj;
  • 初次读引用变量 obj 指向对象的普通域 j。
  • 初次读引用变量 obj 指向对象的 final 域 i。

现在假设写线程 A 没有发生任何重排序,同时程序在不遵守间接依赖的处理器上执行,下面是一种可能的执行时序:
img

在上图中,读对象的普通域的操作被处理器重排序到读对象引用之前。读普通域时,该域还没有被写线程 A 写入,这是一个错误的读取操作。而读 final 域的重排序规则会把读对象 final 域的操作“限定”在读对象引用之后,此时该 final 域已经被 A 线程初始化过了,这是一个正确的读取操作。

读 final 域的重排序规则可以确保:在读一个对象的 final 域之前,一定会先读包含这个 final 域的对象的引用。在这个示例程序中,如果该引用不为 null,那么引用对象的 final 域一定已经被 A 线程初始化过了。

final域是引用类型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public class FinalReferenceExample {
final int[] intArray; //final 是引用类型
static FinalReferenceExample obj;

public FinalReferenceExample () { // 构造函数
intArray = new int[1]; //1
intArray[0] = 1; //2
}

public static void writerOne () { // 写线程 A 执行
obj = new FinalReferenceExample (); //3
}

public static void writerTwo () { // 写线程 B 执行
obj.intArray[0] = 2; //4
}

public static void reader () { // 读线程 C 执行
if (obj != null) { //5
int temp1 = obj.intArray[0]; //6
}
}
}

这里 final 域为一个引用类型,它引用一个 int 型的数组对象。对于引用类型,写 final 域的重排序规则对编译器和处理器增加了如下约束:

在构造函数内对一个 final 引用的对象的成员域的写入,与随后在构造函数外把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。

对上面的示例程序,假设首先线程 A 执行 writerOne() 方法,执行完后线程 B 执行 writerTwo() 方法,执行完后线程 C 执行 reader () 方法。下面是一种可能的线程执行时序:
img

在上图中,1 是对 final 域的写入,2 是对这个 final 域引用的对象的成员域的写入,3 是把被构造的对象的引用赋值给某个引用变量。这里除了前面提到的 1 不能和 3 重排序外,2 和 3 也不能重排序。

JMM 可以确保读线程 C 至少能看到写线程 A 在构造函数中对 final 引用对象的成员域的写入。即 C 至少能看到数组下标 0 的值为 1。而写线程 B 对数组元素的写入,读线程 C 可能看的到,也可能看不到。JMM 不保证线程 B 的写入对读线程 C 可见,因为写线程 B 和读线程 C 之间存在数据竞争,此时的执行结果不可预知。

为什么final引用不能从构造函数内逸出

写 final 域的重排序规则可以确保:在引用变量为任意线程可见之前,该引用变量指向的对象的 final 域已经在构造函数中被正确初始化过了。其实要得到这个效果,还需要一个保证:在构造函数内部,不能让这个被构造对象的引用为其他线程可见,也就是对象引用不能在构造函数中“逸出”。示例如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class FinalReferenceEscapeExample {
final int i;
static FinalReferenceEscapeExample obj;

public FinalReferenceEscapeExample () {
i = 1; //1 写 final 域
obj = this; //2 this 引用在此“逸出”
}

public static void writer() {
new FinalReferenceEscapeExample ();
}

public static void reader {
if (obj != null) { //3
int temp = obj.i; //4
}
}
}

假设一个线程 A 执行 writer() 方法,另一个线程 B 执行 reader() 方法。这里的操作 2 使得对象还未完成构造前就为线程 B 可见。即使这里的操作 2 是构造函数的最后一步,且即使在程序中操作 2 排在操作 1 后面,执行 read() 方法的线程仍然可能无法看到 final 域被初始化后的值,因为这里的操作 1 和操作 2 之间可能被重排序。实际的执行时序可能如下图所示:
img

从上图可以看出:在构造函数返回前,被构造对象的引用不能为其他线程可见,因为此时的 final 域可能还没有被初始化。在构造函数返回后,任意线程都将保证能看到 final 域正确初始化之后的值。

JSR-133为什么要增强final语义

在旧的 Java 内存模型中 ,最严重的一个缺陷就是线程可能看到 final 域的值会改变。比如,一个线程当前看到一个整形 final 域的值为 0(还未初始化之前的默认值),过一段时间之后这个线程再去读这个 final 域的值时,却发现值变为了 1(被某个线程初始化之后的值)。最常见的例子就是在旧的 Java 内存模型中,String 的值可能会改变。

为了修补这个漏洞,JSR-133 专家组增强了 final 的语义。通过为 final 域增加写和读重排序规则,可以为 java 程序员提供初始化安全保证:只要对象是正确构造的(被构造对象的引用在构造函数中没有“逸出”),那么不需要使用同步(指 lock 和 volatile 的使用),就可以保证任意线程都能看到这个 final 域在构造函数中被初始化之后的值。

本文标题:Java内存模型-理解final

文章作者:王洪博

发布时间:2018年07月17日 - 10:07

最后更新:2019年09月12日 - 10:09

原始链接:http://whb1990.github.io/posts/5a0704df.html

▄︻┻═┳一如果你喜欢这篇文章,请点击下方"打赏"按钮请我喝杯 ☕
0%